
## Advances and Challenges in Automated Interlinear Glossing



Background Shared Task Robust Generalization Multilingual Glossing Future Work



### Inc- E3s- give -PI -Enf everything

IGT is a common format for language documentation

#### Transcription

Ti- j- ya' -tq -a' juntiir They give us everything.

### Inc- E3s- give -PI -Enf everything

#### Glosses



### Ti- j- ya' -tq -a' juntiir

### Inc- E3s- give -PI -Enf everything

#### They give us everything.

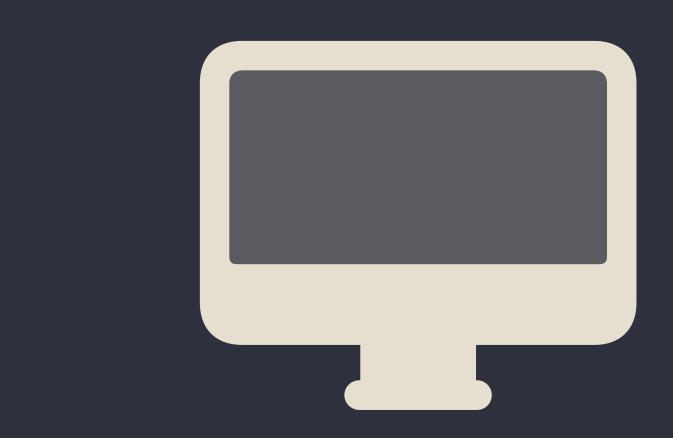




### Ti- j- ya' -tq -a' juntiir

### Inc- E3s- give -PI -Enf everything

#### They give us everything.






Language preservation

Moeller et al. (2020); Bender et al. (2013)

#### IGT can be used for...



#### Linguistic research

#### Language technologies (MT, tagging, parsers)

Zhou et al. (2019); Georgi (2016)

#### Morphological segmentation

### Creating annotated corpora requires significant effort and cost

Annotating novel phenomena

#### Maintaining a standardized format

Stem translation

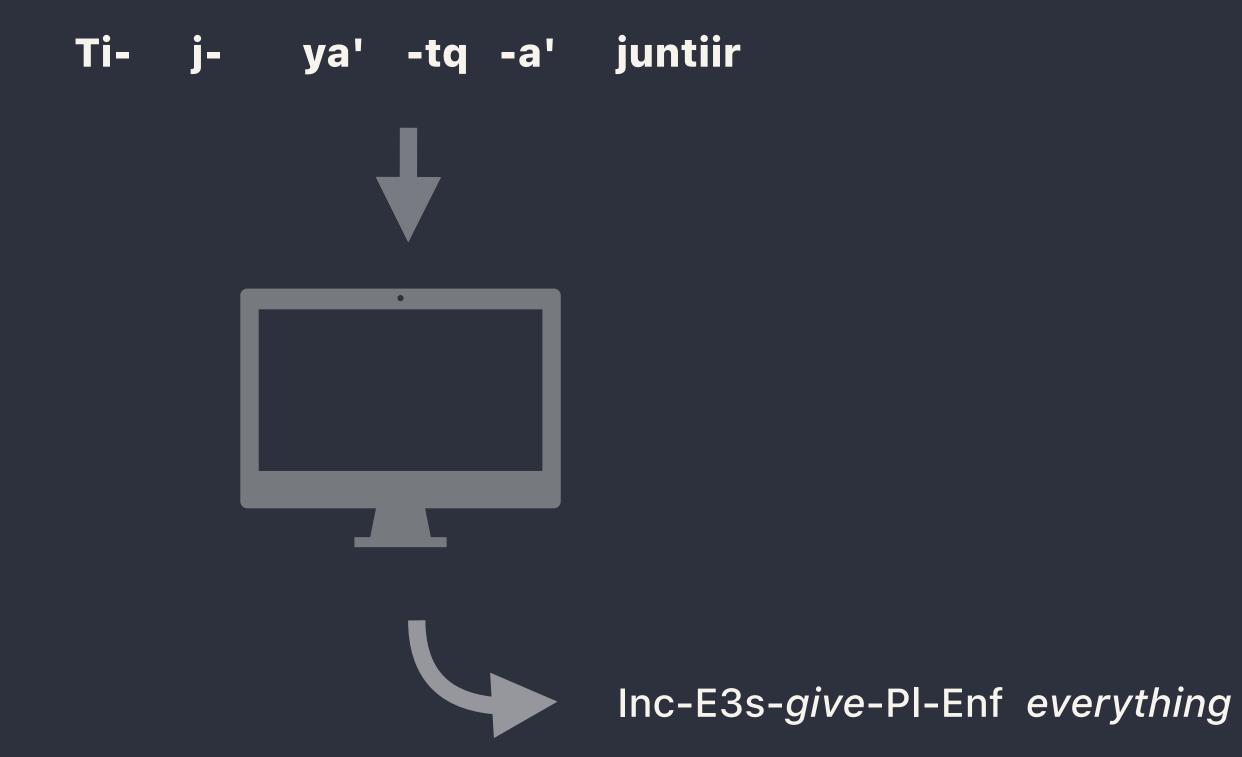
Re-glossing the same morphemes many times

#### Morphological segmentation

### Automated tools can aid annotators with repetitive tasks

Annotating novel phenomena

#### Maintaining a standardized format


Stem translation

Re-glossing the same morphemes many times

### Automated tools can aid annotators with repetitive tasks

#### Maintaining a standardized format

Re-glossing the same morphemes many times



### ML models can reduce annotator effort

Palmer & Baldridge (2009)



Human Annotator





# Many approaches have been used to automate gloss prediction



Palmer & Baldridge (2009)



Bender et al. (2014)

RNNS Moeller & Hulden (2018)



Moeller & Hulden (2018); McMillan-Major (2018)

#### Transformers

Zhao et al. (2020)

### How can we improve automated glossing systems?

Background Shared Task Robust Generalization Multilingual Glossing Future Work

# 2023 SIGMORPHON Shared Task

Ginn et al. (2023)

# 2023 SIGMORPHON Shared Task

- First public task for IGT glossing models
- Participants built systems for predicting glosses given transcriptions and (in some cases) translations

# 2023 SIGMORPHON Shared Task

#### los gato-s corr-en

#### the-PL cat-PL run-3PL

#### **Open Track**

#### los gatos corren

#### the-PL cat-PL run-3PL

**Closed Track** 

# 2023 SIGMORPHON Shared Task Languages

#### Arapaho 175k tokens

**Natugu** 12k tokens Nyangbo 11k tokens

### Gitksan

1k tokens

**Lezgi** 9k tokens

#### **Tsez** 47k tokens

### Uspanteko

45k tokens

# 2023 SIGMORPHON Shared Task Teams

- **COATES** LSTM Encoder-Decoder
- **LISNTeam** Hybrid CRF-Neural
- SigMoreFun Multilingual Pretrained Transformers
- TeamSiggyMorph BiLSTM, ByT5
  - Tü-CL Straight-through gradient estimation, hard attention

## **2023 SIGMORPHON Shared Task** Results

| MORPHEME-LEVEL ACCURACY |       |       |       |       |       |       |       |       |           |  |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|--|
| Submission              | Arp   | Ddo   | Git   | Lez   | Ntu   | Nyb   | Usp   | AVG   | Complete? |  |
| TÜ-CL <sub>2</sub>      | 78.47 | 73.95 | 11.72 | 62.10 | 56.32 | 85.24 | 70.05 | 62.55 | YES       |  |
| $T\ddot{U}$ - $CL_1$    | 76.56 | 70.29 | 9.26  | 62.03 | 56.38 | 86.74 | 60.42 | 60.24 | YES       |  |
| $TEAMSIGGYMORPH_1$      | -     | 53.19 | -     | 28.13 | 31.86 | 66.25 | 59.73 | 47.83 |           |  |
| $COATES_1$              | 45.42 | 64.43 | 9.84  | 40.74 | 37.55 | 72.82 | 56.02 | 46.69 | YES       |  |
| BASELINE                | 44.19 | 51.23 | 8.54  | 41.62 | 18.17 | 14.22 | 57.24 | 33.60 | YES       |  |



#### **Closed Track**

## 2023 SIGMORPHON Shared Task Results

| MORPHEME-LEVEL ACCURACY |       |       |       |       |       |       |       |       |           |  |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|--|
| Submission              | Arp   | Ddo   | Git   | Lez   | Ntu   | Nyb   | Usp   | AVG   | Complete? |  |
| TÜ-CL <sub>2</sub>      | 91.37 | 92.01 | 50.22 | 87.61 | 92.32 | 91.40 | 84.51 | 84.21 | YES       |  |
| $SIGMOREFUN_2$          | 89.34 | 88.15 | 52.39 | 82.36 | 85.53 | 89.49 | 83.08 | 81.48 | YES       |  |
| $LISNTEAM_1$            | -     | 91.39 | 50.80 | 87.17 | 92.60 | -     | 82.42 | 80.88 |           |  |
| $TEAMSIGGYMORPH_2$      | -     | 88.36 | 47.76 | 86.59 | 92.10 | 82.74 | 82.22 | 79.96 |           |  |
| $SIGMOREFUN_1$          | 91.36 | 84.35 | 47.47 | 80.17 | 88.35 | 85.84 | 80.08 | 79.66 | YES       |  |
| $T\ddot{U}$ - $CL_1$    | 90.93 | 91.16 | 17.08 | 83.45 | 90.17 | 89.96 | 83.45 | 78.03 | YES       |  |
| LISNTEAM <sub>2</sub>   | -     | -     | 51.09 | 86.52 | 92.77 | -     | -     | 76.79 |           |  |
| BASELINE                | 91.11 | 85.34 | 25.33 | 51.82 | 49.03 | 88.71 | 82.48 | 67.69 | YES       |  |
| $SIGMOREFUN_4$          | 80.81 | 78.24 | 12.74 | 50.00 | 63.39 | 85.30 | 73.25 | 63.39 | YES       |  |
| SIGMOREFUN <sub>3</sub> | 72.10 | 57.93 | 2.60  | 26.24 | 35.62 | 70.01 | 67.73 | 47.46 | YES       |  |



#### **Open Track**

# 2023 SIGMORPHON Shared Task **Observations**

- Hard attention (Girrback, 2023) is highly effective at the joint segmentation and glossing task
  - Also provides an interpretable model
- languages

Multilingual training (He et al., 2023) can provide benefits to low-resource



What challenges rer IGT systems?

# What challenges remain with automated

Background Shared Task Robust Generalization Multilingual Glossing Future Work

Robust Generalization Strategies for Morpheme Glossing in an Endangered Language Documentation Setting. Ginn and Palmer, 2023.

- IGT corpora are often the product of a single documentation project
- Represent a limited domain of text (genre, speaker, etc)
- IGT models must generalize well to unseen texts for future documentation projects

# We evaluate generalization by splitting our dataset by text genre

#### **Stories**

### Historical narratives

Uspanteko corpus from Palmer et al. (2009)

12k lines

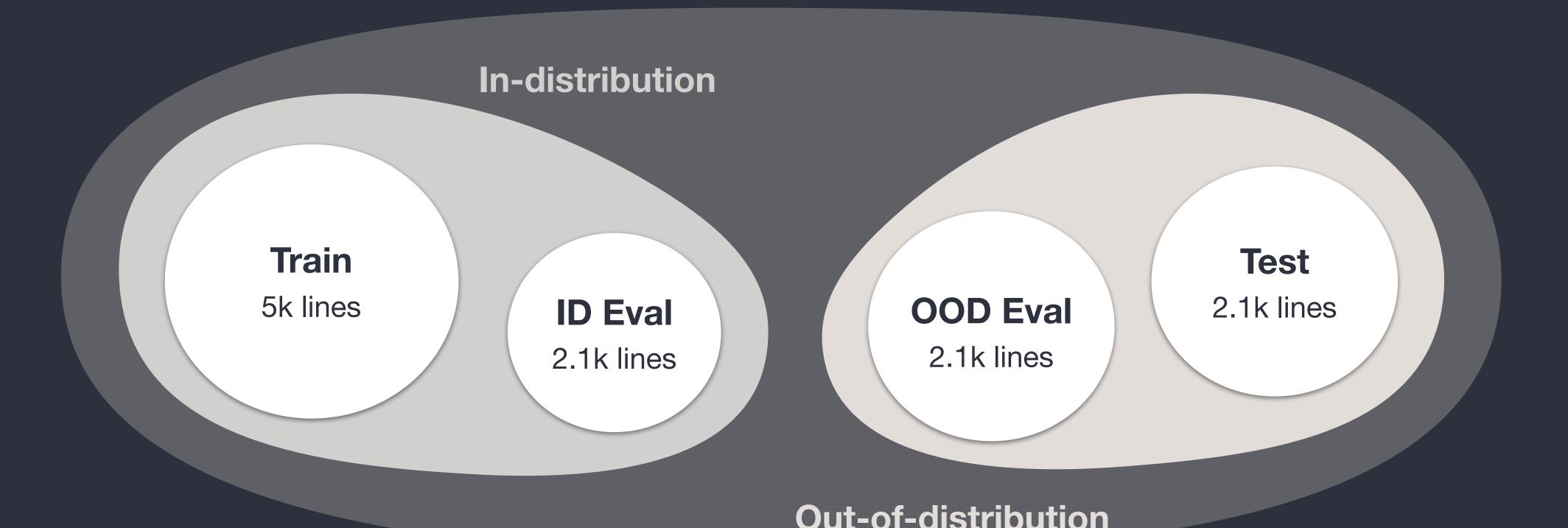
29 docs

#### Advice

#### Personal anecdotes

# We evaluate generalization by splitting our dataset by text genre

In-distribution


Stories

Historical narratives

#### Advice

#### Personal anecdotes

**Out-of-distribution** 



### ID data is used for training and eval, and OOD is used for eval and testing

**Out-of-distribution** 





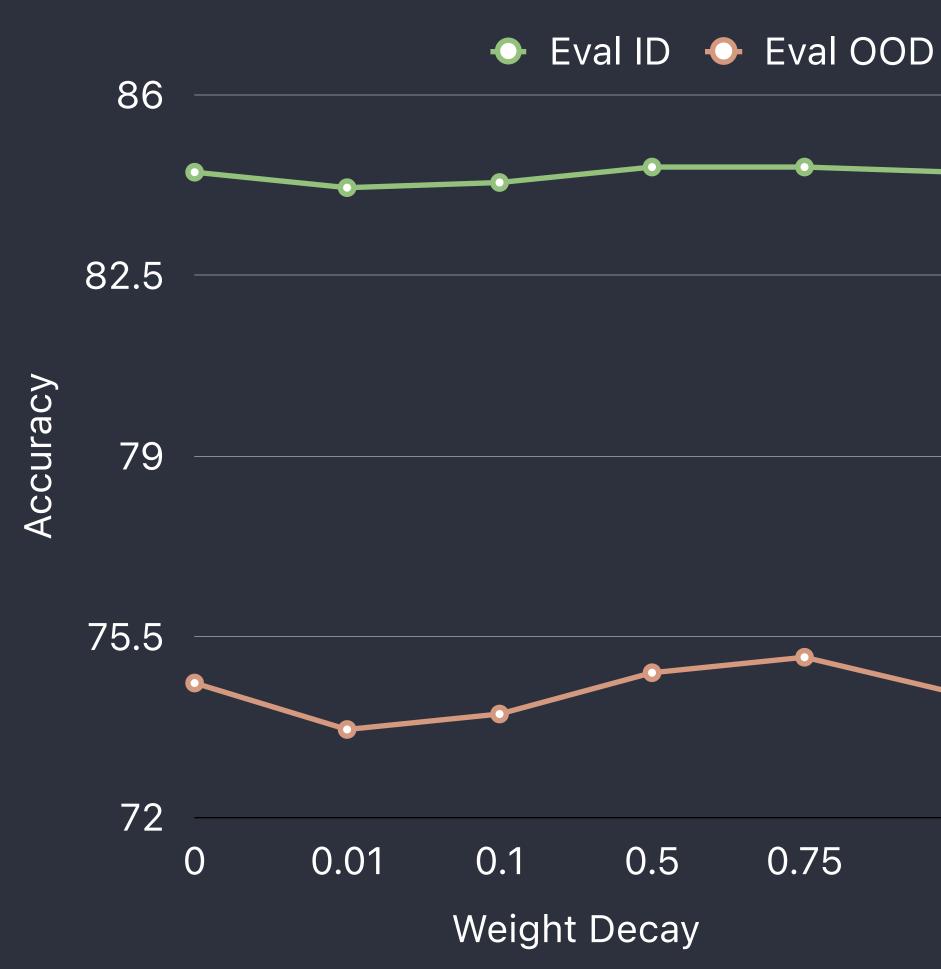
Perplexity: 77.8 Accuracy: **84.5** 



#### Perplexity: 94.0 Accuracy: **74.6**

#### We demonstrate that the OOD data performs worse for language modeling and gloss generation.

**Evaluating generalization** is critical for robust IGT systems that can be used in **documentation projects**.


**Generalization Strategies** 

# **Generalization Strategies**

Weight Decay Masked Language Modeling for OOV Tokens Iterative Pseudo-Labeling



# Weight Decay



1

#### Higher weight decay helps regularization and avoiding overfitting.

# **Generalization Strategies**

Weight Decay Masked Language Modeling for OOV Tokens Iterative Pseudo-Labeling



# Masked Language Modeling for OOV Tokens

- - OOD: 6.2% vs ID: 3.0%
- Transformer glossing models may not handle OOV morphemes well
- We can often recover gloss from context

#### Out-of-vocabulary tokens are a greater cause of error in OOD texts



# Masked Language Modeling for OOV Tokens

## We train a masked language model on gloss sequences and apply it to the output of the token classifier.

We achieve limited improvement (0.2%)

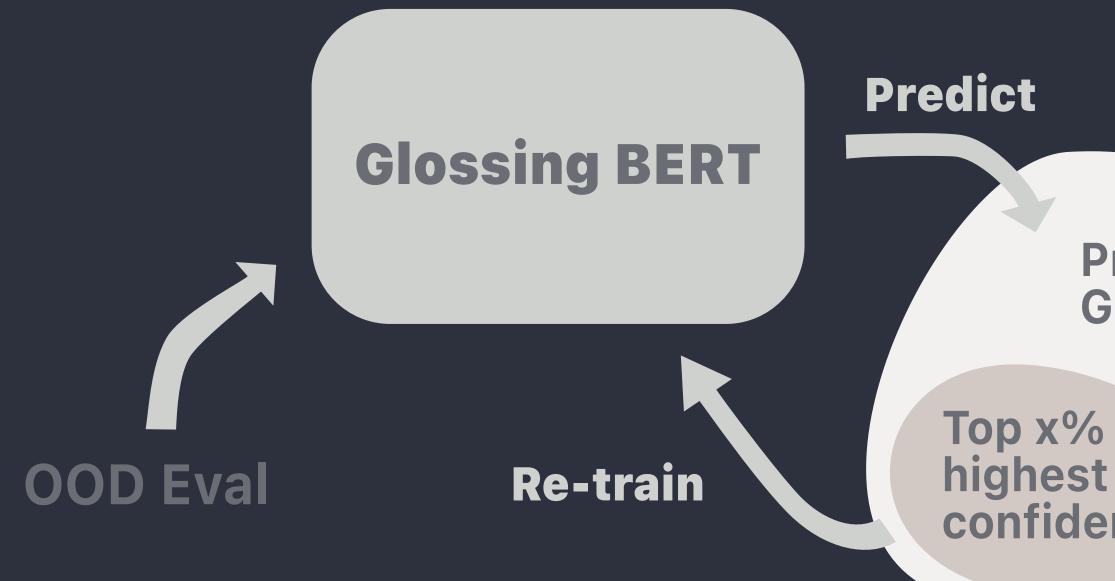


## **MLM BERT**

## 1

## **Token Classifier BERT**

**t** Morphemes




# **Generalization Strategies**

Weight Decay Masked Language Modeling for OOV Tokens Iterative Pseudo-Labeling



# Iterative Pseudo-Labeling



## Use glossing model to do inference on OOD data

Select top x% of predictions by confidence and add to training set

## **Repeat!**

Predicted Glosses

confidence



# Results



# Discussion

- Training strategies can improve robustness a limited amount
- Distributional shift remains a difficult problem for IGT models

## obustness a limited amount cult problem for IGT models

Background Shared Task Robust Generalization Multilingual Glossing Future Work

# Multilingual Glossing

GlossLM: Multilingual Pretraining for Low-Resource Interlinear Glossing. Ginn et al., 2024.

Can we leverage IGT across languages to improve automated glossing?



## ByT5 pretrained on **ODIN** corpus

### He et al. (2023)

### SigMoreFun Submission to the SIGMORPHON Shared Task on Interlinear Glossing

Taiqi He , Lindia Tjuatja , Nate Robinson, Shinji Watanabe, David R. Mortensen, Graham Neubig, Lori Levin Language Technologies Institute Carnegie Mellon University

{taiqih,ltjuatja,nrrobins,swatanab,dmortens,gneubig,lsl}@cs.cmu.edu

### Abstract

In our submission to the SIGMORPHON 2023 Shared Task on interlinear glossing (IGT), we explore approaches to data augmentation and modeling across seven low-resource languages. For data augmentation, we explore two approaches: creating artificial data from the pro vided training data and utilizing existing IGT resources in other languages. On the modeling side, we test an enhanced version of the provided token classification baseline as well as a pretrained multilingual seq2seq model. Additionally, we apply post-correction using a dictionary for Gitksan, the language with the smallest amount of data. We find that our token classification models are the best performing, with the highest word-level accuracy for Arapaho and highest morpheme-level accuracy for Gitksan out of all submissions. We also show that data augmentation is an effective strategy, though applying artificial data pretraining has very different effects across both models tested.

### 1 Introduction

This paper describes the SigMoreFun submission to the SIGMORPHON 2023 Shared Task on interlinear glossing. Given input text in a target language, the task is to predict the corresponding interlinear gloss (using Leipzig glossing conventions). IGT an important form of linguistic apportation for

search goals of our team, we only participate in this open track.

In our submission, we investigate two different approaches. First, we attempt data augmentation by either creating our own artificial gloss data by manipulating the existing training data, or by utilizing existing resources containing IGT in other languages ( $\S$ 2). Second, we explore two different models for gloss generation (§3). The first builds off the token classification baseline, while the second uses a pretrained multilingual seq2seq model.

Finally, we also attempt to post-correct model outputs with a dictionary. We apply this to Gitksan and find that this, combined with our other approaches, results in the highest morpheme-level accuracy for Gitksan in Track 2.

### 2 Data Augmentation

One major challenge for this shared task is the scale of data provided. All of the languages have less than 40k lines of training data, and all but Arapaho have less than 10k. The smallest dataset (Gitksan) has only 31 lines of data. Thus, one obvious method to try is data augmentation. More specifically, we try pretraining our models on different forms of augmented data before training them on the original target language data.

We explored two forms of data augmentation.

## CRF trained on **IMTVault** corpus

Shu Okabe Université Paris-Saclay & CNRS LISN, rue du Belvédère 91405 Orsay, France shu.okabe@limsi.fr

### Abstract

Interlinear Morphological Glosses are annotations produced in the context of language documentation. Their goal is to identify morphs occurring in an L1 sentence and to explicit their function and meaning, with the further support of an associated translation in L2. We study here the task of automatic glossing, aiming to provide linguists with adequate tools to facilitate this process. Our formalisation of glossing uses a latent variable Conditional Random Field (CRF), which labels the L1 morphs while simultaneously aligning them to L2 words. In experiments with several under-resourced lar guages, we show that this approach is both effective and data-efficient and mitigates the problem of annotating unknown morphs. We also discuss various design choices regarding the alignment process and the selection of features. We finally demonstrate that it can benefit from multilingual (pre-)training, achieving results which outperform very strong baselines.

### 1 Introduction

Interlinear Morphological Gloss (IMG) (Lehmann, 2004; Bickel et al., 2008) is an annotation layer aimed to explicit the meaning and function of each morpheme in some documentation ('object') lan-



### Okabe & Yvon (2024)

## ByT5 pretrained on GlossLM corpus

### <u>Ginn et al. (2024)</u>

**GlossLM: Multilingual Pretraining for Low-Resource Interlinear Glossing** 

Michael Ginn<sup>1\*</sup> Lindia Tjuatja<sup>2\*</sup> Taiqi He<sup>2</sup> Enora Rice<sup>1</sup> **Graham Neubig<sup>2</sup>** Alexis Palmer<sup>1</sup> Lori Levin<sup>2</sup> <sup>1</sup>University of Colorado Boulder <sup>2</sup>Carnegie Mellon University michael.ginn@colorado.edu lindiat@andrew.cmu.edu

### Abstract

A key aspect of language documentation is the creation of annotated text in a format such as interlinear glossed text (IGT), which captures fine-grained morphosyntactic analyses in a morpheme-by-morpheme format. Prior work has explored methods to automatically generate IGT in order to reduce the time cost of language analysis. However, many languages (particularly those requiring preservation) lack sufficient IGT data to train effective models, and crosslingual transfer has been proposed as a method to overcome this limitati

We compile the largest existing corpus of IGT data from a variety of sources, covering over 450k examples across 1.8k languages, to enable research on crosslingual transfer and IGT generation. Then, we pretrain a large multilingual model on a portion of this corpus, and further finetune it to specific languages. Our model is competitive with state-of-the-art methods for segmented data and large monolingual datasets. Meanwhile, our model outperforms SOTA models on unsegmented text and small corpora by up to 6.6% morpheme accuracy, demonstrating the effectiveness of crosslingual transfer for low-resource languages.<sup>1</sup>

### 1 Introduction

With nearly half of the world's 7,000 languages

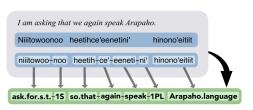



Figure 1: Components of interlinear gloss with an Arapaho sentence and English translation (Cowell, 2020) Blue boxes show transcriptions that are unsegmented (top) or segmented (bottom). Segmented text is split nto morphemes which are aligned with the gloss label shown in the green box. The task of automatic glossing uses some or all of the information in the gray box (transcription & translation) to generate the gloss line.

other archival materials, as well as in the development of language technologies including searchable digital text (Blokland et al., 2019; Rijhwani et al., 2023) and computer-assisted educational tools (Uibo et al., 2017; Chaudhary et al., 2023)

One prevalent form of linguistic annotation in language documentation projects is interlinear glossed text (IGT). IGT is a multi-line data format which includes (1) a transcription of speech in the language, (2) an aligned morpheme-by-morpheme description, and oftentimes (3) a free translation.

### **Towards Multilingual Interlinear Morphological Glossing**

François Yvon Sorbonne Université & CNRS ISIR, 5 Place Jussieu 75005 Paris, France francois.yvon@isir.upmc.fr

| t                | Nesis              | ł <sup>°</sup> ono | uži | zown            |  |
|------------------|--------------------|--------------------|-----|-----------------|--|
| $\boldsymbol{x}$ | nesi-s             | 4 <sup>°</sup> ono | uži | zow–n           |  |
| $\boldsymbol{y}$ | he.obl-gen1        | three              | son | be.nprs-pst.unw |  |
| $\boldsymbol{z}$ | He had three sons. |                    |     |                 |  |

Figure 1: A sample entry in Tsez: L1 sentence (t), and its morpheme-segmented version (x), its gloss (y), and a L2 translation (z). Grammatical glosses are in small capital, lexical glosses in straight orthography.

In this paper, we study the task of automatically computing the gloss tier, assuming that the morphological analysis x and the free L2 translation zare available. As each morpheme has exactly one associated gloss,<sup>1</sup> an obvious formalisation of the task that we mostly adopt views glossing as a sequence labelling task performed at the morpheme level. Yet, while grammatical glosses effectively constitute a finite set of labels, the diversity of lexical glosses is unbounded, meaning that our tagging model must accommodate an open vocabulary of labels. This issue proves to be the main challenge of this task, especially in small training data regimes. To handle such cases, we assume that lexical

glosses can be directly inferred from the translation tier, an assumption we share with (McMillan-Major, 2020; Zhao et al., 2020). In our model, we guage L1, using a (meta)-language L2. In compu- thus consider that the set of possible morpheme tational language documentation scenarios, L1 is labels in any given sentence is the union of (i) all 202 Mar 11 CI CS v1Xiv:2403.06399

**IMTVault** 1.1k langs 80k rows Nordhoff & Forkel (2023)

### ODIN 936 langs 84k rows Lewis & Xia (2010)

## SIGMORPHON

7 langs 69k rows Ginn et al. (2023)

### **APiCS** 76 langs 16k rows Michaelis et al. (2013)

## **GlossLM Corpus**

UraTyp 35 langs 1.7k rows Norvik et al. (2022)

## **Guarani Corpus**

1 lang 803 rows Zubizarreta (2023)

### Standardized punctuation and formatting

### Translation language verification

### Filtering of low-quality rows

## **GlossLM Corpus**

1.8k langs 451k rows



## **GlossLM Corpus**

| ) ~ < 🖤                                                              |                                           |                                               | 😕 huggingfac                         | e.co/datasets/lecslab/glossIm- |  |  |
|----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------|--|--|
| 😣 Hugging Face                                                       | Q Search models                           | s, datasets, users                            |                                      | Models                         |  |  |
| <ul> <li>Datasets: Image: Croissant</li> <li>Dataset card</li> </ul> | ecslab/glosslm<br>■ Viewer → Files        | _                                             | like 0<br>Community 1                | Settings                       |  |  |
| Dataset Viewer                                                       |                                           |                                               | C <u>Auto-converted</u> to Parquet   |                                |  |  |
| Split (1)<br>train · 451k rows                                       |                                           | $\checkmark$                                  |                                      |                                |  |  |
| Q Search this dataset                                                |                                           |                                               |                                      |                                |  |  |
| <b>transcription</b><br>string · <i>lengths</i>                      | <b>glosses</b><br>string · <i>lengths</i> | <b>translation</b><br>string · <i>lengths</i> | <b>glottocode</b><br>string · lengtl | id<br>hs string · lengths      |  |  |
| 1 11.9kø                                                             | 1 16.9kø                                  | 0 10.3k e                                     | Θ                                    | 8 ø 8 23                       |  |  |
| dán buori biillas                                                    | this.GENACC<br>good.GENACC                | in this good car                              | nort2671                             | uratyp_1                       |  |  |
| Kás'sa lea beavddi<br>vuolde                                         | box be.3SG<br>table.GEN…                  | The box is under<br>the table                 | nort2671                             | uratyp_2                       |  |  |
| Máreha<br>boađedettiin                                               | Máret.GENACC<br>come.CVB                  |                                               | nort2671                             | uratyp_3                       |  |  |
| Piera lea ~ le-i<br>juhka-min vuola                                  | Piera be.3SG ~ be-<br>PST.3SG drink       | Piera is ~ was<br>drinking beer               | nort2671                             | uratyp_4                       |  |  |
| Toga lea (aiddo)<br>vuolgi-min                                       | train be.3SG<br>(just) leave-PROG         | The train is about<br>to leave                | nort2671                             | uratyp_5                       |  |  |
| le-imme geahčča-n                                                    | be-PST.1DU watch-<br>PST.PTCP             | we two had watched                            | nort2671                             | uratyp_6                       |  |  |
|                                                                      | < Previou                                 | ıs <b>1</b> 2 3                               | 4,512                                | Next >                         |  |  |

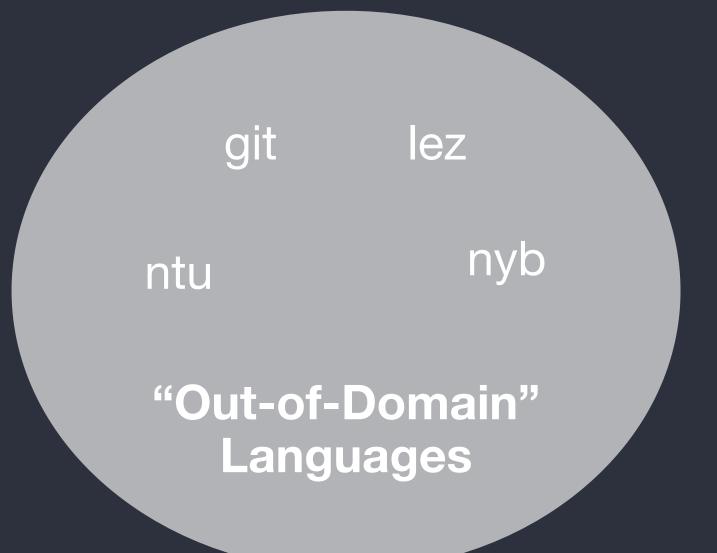
| -c  | orpus 🔒                              |
|-----|--------------------------------------|
|     | Datasets                             |
|     |                                      |
|     |                                      |
|     |                                      |
|     |                                      |
| n D | ataset Viewer                        |
|     |                                      |
|     |                                      |
| 1   | <b>source</b><br>string · <i>cla</i> |
|     | 6 values                             |
|     | uratyp                               |
|     |                                      |

# **GlossLM Training**

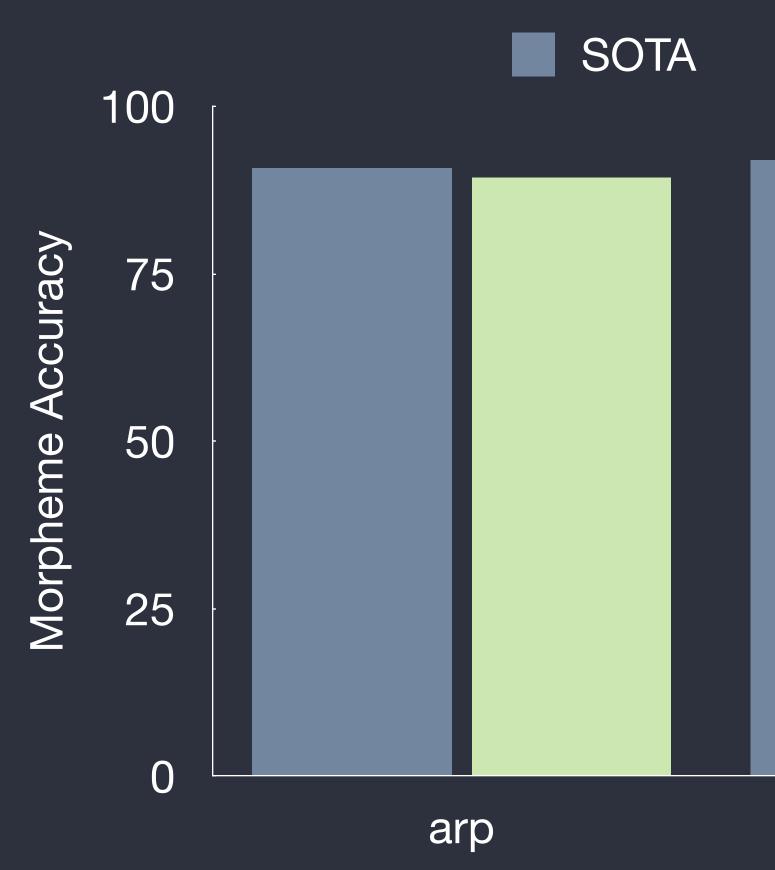


Pretraining on GlossLM Corpus



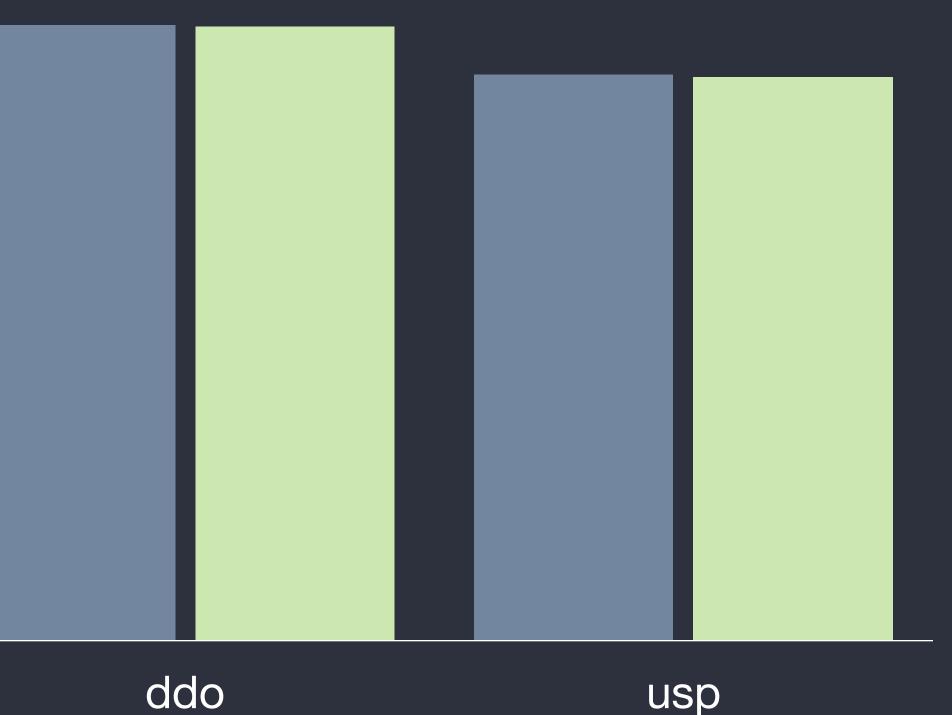

Finetuning on Language-Specific Corpus

# **Evaluation Languages**


ddo arp usp

> "In-Domain" Languages

GlossLM Pretraining Corpus



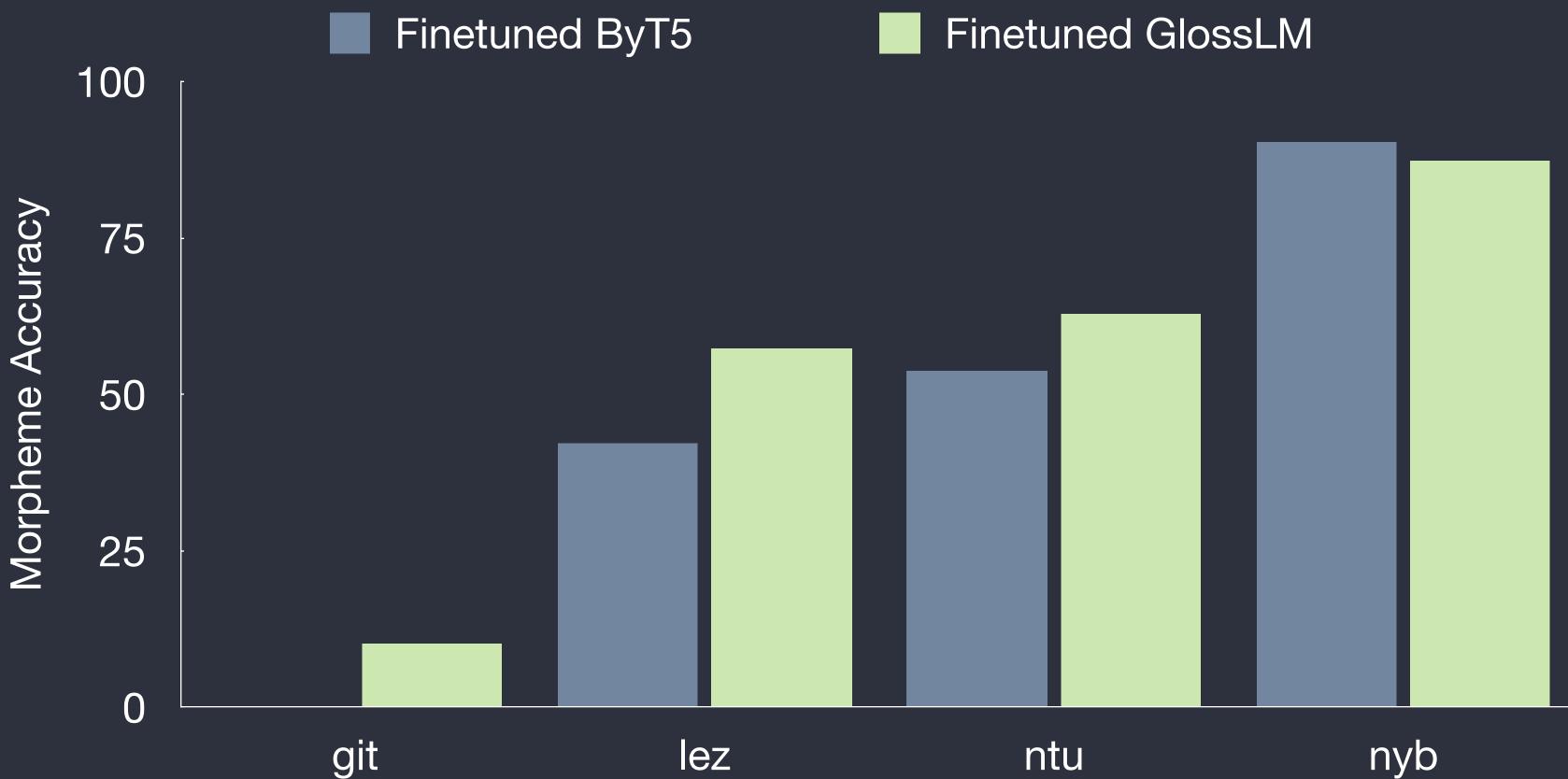

## How well does the pretrained model perform on seen languages?



\* we focus on the unsegmented "closed-track" setting

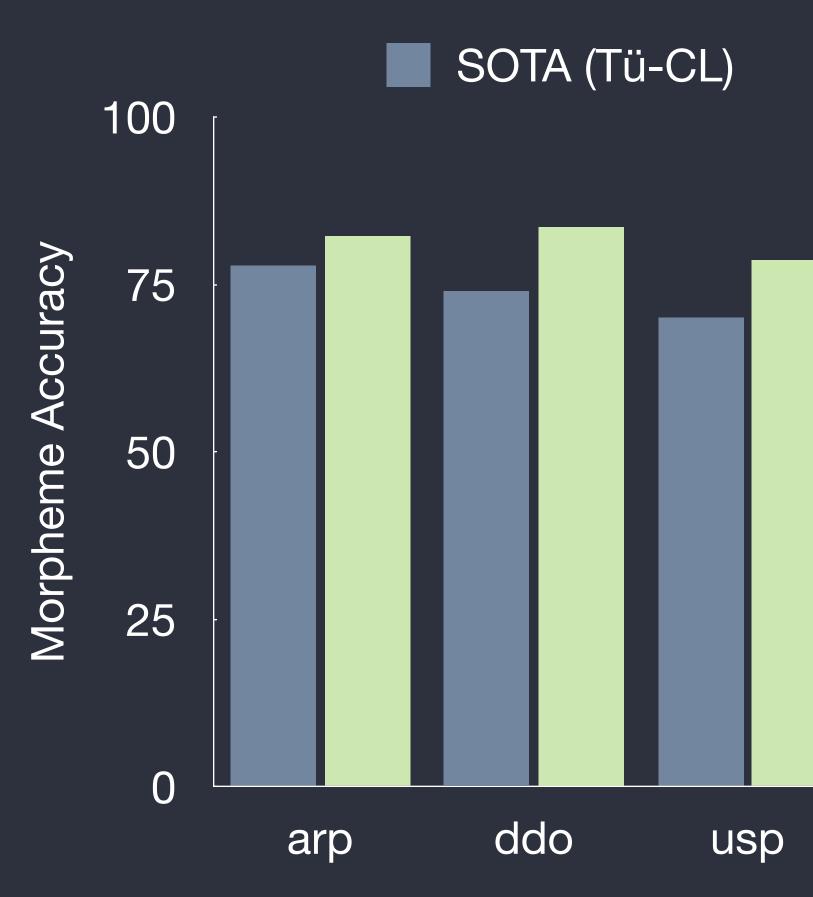




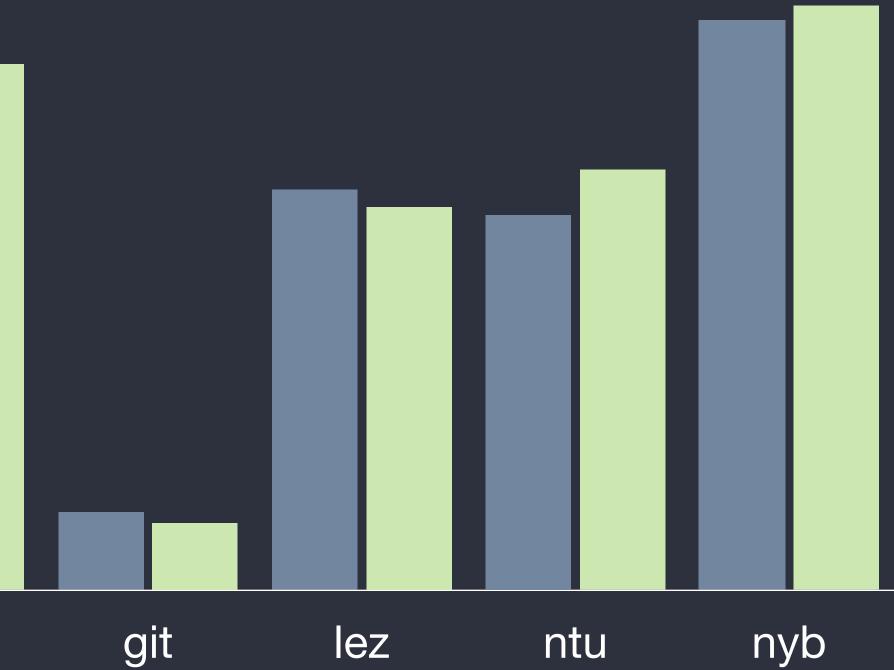



## How well does the pretrained model perform on seen languages?

- Generally very close to SOTA
- Model does not seem to suffer from "curse of multilinguality"


What about after finetuning?

## **Does IGT pretraining help for** finetuning models on new languages?






# How do fine-tuned GlossLM models compare to SOTA?







# Discussion

- Pretrained model is very competent
- Finetuned models are even better!

• Benefits from pretraining

Background Shared Task Robust Generalization Multilingual Glossing Future Work

## Can LLM-based glossing systems be controllable?

|                                                                                | Ithub.com/michaelpginn/igt-icl 🔒 🗐 🗐                                                               | • • • •                                                         |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| E C michaelpginn / igt-icl                                                     | Q Type [] to search                                                                                | >_   + → ⊙ II 🗗 🖗                                               |  |
| <> Code 🕢 Issues 11 Pull requests 🕞 Actions 🖽                                  | Projects 🖽 Wiki 민 Security 🗠 Insights 🟟 Settings                                                   |                                                                 |  |
| igt-icl Public                                                                 | S Pin O Unwatch 1                                                                                  | ▼ Fork 0 ▼ Star 0 ▼                                             |  |
|                                                                                | Q Go to file t Add file - <> Code -                                                                | About 段                                                         |  |
| michaelpginn Update README.md                                                  | 7420887 · 2 weeks ago 🕒 14 Commits                                                                 | LLM-based interlinear glossing                                  |  |
| experiments                                                                    | Fix dict conversion 2 weeks ago                                                                    | -^- Activity                                                    |  |
| igt_icl                                                                        | Fix dict conversion 2 weeks ago                                                                    | <ul> <li>☆ 0 stars</li> <li>⊙ 1 watching</li> </ul>             |  |
| tests                                                                          | Refactor again 2 weeks ago                                                                         | ੇ 0 forks                                                       |  |
| 🗋 .gitignore                                                                   | Initial commit 2 weeks ago                                                                         | Releases                                                        |  |
| README.md                                                                      | Update README.md 2 weeks ago                                                                       | No releases published                                           |  |
|                                                                                |                                                                                                    | Create a new release                                            |  |
| igt-icl                                                                        |                                                                                                    | Packages<br>No packages published<br>Publish your first package |  |
| LLM-based Automated Interlinear Glose                                          | LLM-based Automated Interlinear Glossing                                                           |                                                                 |  |
| igt-icl is a package that allows for a<br>language models (LLMs) to produce co | itomated interlinear glossing using the in-context abilities of large ntext-sensitive gloss lines. | <ul> <li>Python 99.0%</li> <li>Shell 1.0%</li> </ul>            |  |

Suggested workflows

## Can LLM-based glossing systems be cost-efficient?

|                                                                          | github.com/michaelpginn/igt-icl                                                                                                                                              |                                        |                                                     | () 📀 +   |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|----------|
| E C michaelpginn / igt-icl ↔ Code ⊙ Issues 1 Pull requests ⊙ Actions ⊞ P | Projects 🎞 Wiki 🕛 Security 🗠 Insights 🐼 S                                                                                                                                    | Q Type [] to search                    | >_   <b>+</b> (                                     | 0 II 🕒 🦃 |
| igt-icl Public                                                           |                                                                                                                                                                              | Settings Settings Settings Onwatch 1 ■ | ▼ % Fork 0 ▼ ☆ Star 0 ▼                             |          |
| 우 main ▾ 우 1 Branch ⓒ 0 Tags                                             | Q Go to file                                                                                                                                                                 | Add file - <> Code -                   | About                                               | হ্ট      |
| R michaelpginn Update README.md                                          | 7420887 · 2 w                                                                                                                                                                | veeks ago 🕚 14 Commits                 | LLM-based interlinear glossing                      |          |
| experiments                                                              | Fix dict conversion                                                                                                                                                          | 2 weeks ago                            | - Activity                                          |          |
| igt_icl                                                                  | Fix dict conversion                                                                                                                                                          | 2 weeks ago                            | <ul> <li>☆ 0 stars</li> <li>● 1 watching</li> </ul> |          |
| tests                                                                    | Refactor again                                                                                                                                                               | 2 weeks ago                            | <ul><li>① 1 watching</li><li>ジ 0 forks</li></ul>    |          |
| 🗋 .gitignore                                                             | Initial commit                                                                                                                                                               | 2 weeks ago                            | Balance                                             |          |
| README.md                                                                | Update README.md                                                                                                                                                             | 2 weeks ago                            | Releases<br>No releases published                   |          |
|                                                                          |                                                                                                                                                                              | ∅ :≡                                   | Create a new release<br>Packages                    |          |
| igt-icl                                                                  |                                                                                                                                                                              |                                        | No packages published<br>Publish your first package |          |
| LLM-based Automated Interlinear Glossi                                   | LLM-based Automated Interlinear Glossing                                                                                                                                     |                                        |                                                     |          |
|                                                                          | igt-icl is a package that allows for automated interlinear glossing using the in-context abilities of large language models (LLMs) to produce context-sensitive gloss lines. |                                        |                                                     |          |

Suggested workflows

## Can LLM-based glossing systems be cost-efficient?

|                                                                          | github.com/michaelpginn/igt-icl                                                                                                                                              |                                        |                                                     | () 📀 +   |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|----------|
| E C michaelpginn / igt-icl ↔ Code ⊙ Issues 1 Pull requests ⊙ Actions ⊞ P | Projects 🎞 Wiki 🕛 Security 🗠 Insights 🐼 S                                                                                                                                    | Q Type [] to search                    | >_   <b>+</b> (                                     | 0 II 🕒 🦃 |
| igt-icl Public                                                           |                                                                                                                                                                              | Settings Settings Settings Onwatch 1 ■ | ▼ % Fork 0 ▼ ☆ Star 0 ▼                             |          |
| 우 main ▾ 우 1 Branch ⓒ 0 Tags                                             | Q Go to file                                                                                                                                                                 | Add file - <> Code -                   | About                                               | হ্ট      |
| R michaelpginn Update README.md                                          | 7420887 · 2 w                                                                                                                                                                | veeks ago 🕚 14 Commits                 | LLM-based interlinear glossing                      |          |
| experiments                                                              | Fix dict conversion                                                                                                                                                          | 2 weeks ago                            | - Activity                                          |          |
| igt_icl                                                                  | Fix dict conversion                                                                                                                                                          | 2 weeks ago                            | <ul> <li>☆ 0 stars</li> <li>● 1 watching</li> </ul> |          |
| tests                                                                    | Refactor again                                                                                                                                                               | 2 weeks ago                            | <ul><li>① 1 watching</li><li>ジ 0 forks</li></ul>    |          |
| 🗋 .gitignore                                                             | Initial commit                                                                                                                                                               | 2 weeks ago                            | Balance                                             |          |
| README.md                                                                | Update README.md                                                                                                                                                             | 2 weeks ago                            | Releases<br>No releases published                   |          |
|                                                                          |                                                                                                                                                                              | ∅ :≡                                   | Create a new release<br>Packages                    |          |
| igt-icl                                                                  |                                                                                                                                                                              |                                        | No packages published<br>Publish your first package |          |
| LLM-based Automated Interlinear Glossi                                   | LLM-based Automated Interlinear Glossing                                                                                                                                     |                                        |                                                     |          |
|                                                                          | igt-icl is a package that allows for automated interlinear glossing using the in-context abilities of large language models (LLMs) to produce context-sensitive gloss lines. |                                        |                                                     |          |

Suggested workflows

# Summary

- techniques
- IGT models can benefit from multilingual training

## Automated IGT Glossing models are becoming more capable with modern

IGT models must be robust to distributional shift for real-world usage

# Thank you!

This material is based upon work supported by the National Science Foundation under Grant No. 2149404, "CAREER: From One Language to Another". Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.